Neural Node Matching for Multi-Target Cross Domain Recommendation

Wujiang Xu ^{†*}, Shaoshuai Li ^{†*}, Mingming Ha ^{†ξ}, Xiaobo Guo ^{‡§}, Qiongxu Ma [†], Xiaolei Liu [†], Linxun Chen [†], Zhenfeng Zhu ^{‡§}

[†] MYbank, Ant Group, Hangzhou, China

[‡] Institute of Information Science, Beijing Jiaotong University, Beijing, China

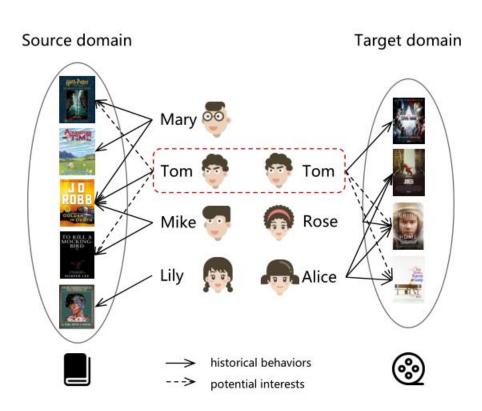
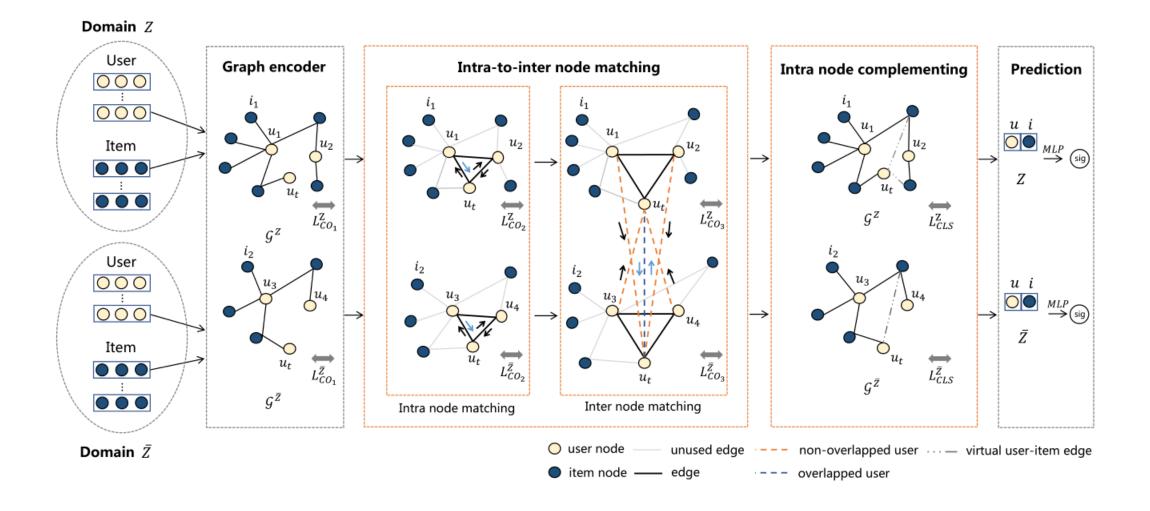
^ξ Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China {xuwujiang.xwj,lishaoshuai.lss,hamingming.hmm,qiongxu.mqx,liuxiaolei.lxl, linxun.clx}@mybank.cn, {xb_guo,zhfzhu}@bjtu.edu.cn

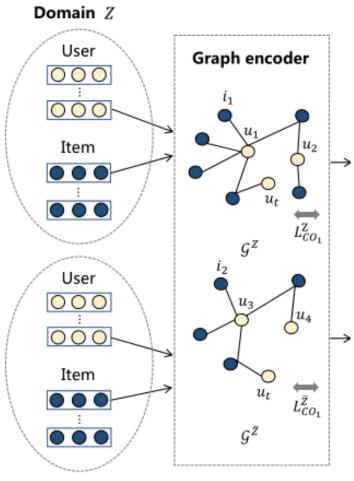
https://github.com/WujiangXu/NMCDR

(ICDE-2023)

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

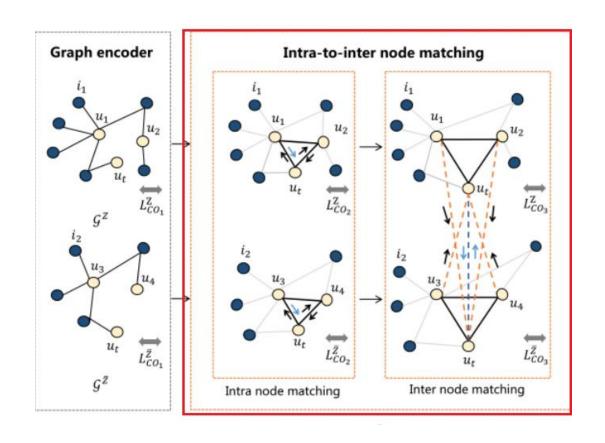

Fig. 1: The partially overlapped CDR scenarios.

it is challenging to guarantee the multi-target cross-domain recommendation performance with only quite a few overlapping users

users may be under-represented based on their observed sparse interactions

Domain \bar{Z}

$$\boldsymbol{E}^{Z} = \left[\boldsymbol{u}_{1}^{Z}, \cdots, \boldsymbol{u}_{N}^{Z}, \ \boldsymbol{v}_{1}^{Z}, \cdots, \boldsymbol{v}_{M}^{Z}\right]. \tag{1}$$


$$\boldsymbol{m}_{u_i^Z \leftarrow v_j^Z} = f_{u_i}(\boldsymbol{v}_j^Z, e_{u_i v_j}^Z), \tag{2}$$

$$\boldsymbol{m}_{u_i^Z \leftarrow v_j^Z} = \frac{1}{|\mathcal{N}_{u_i^Z}|} (\boldsymbol{v}_j^Z \boldsymbol{W}_{hge}^Z + \boldsymbol{b}_{hge}^Z) e_{u_i v_j}^Z, \tag{3}$$

 $\mathcal{N}_{u_i^Z}$ denotes the first-hop neighbors of user u_i^Z .

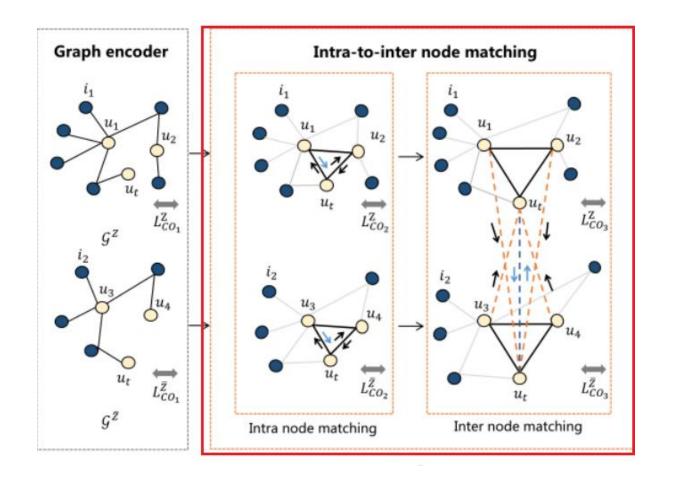
$$\boldsymbol{u}_{g1_i}^Z = \text{ReLU}(\tilde{\boldsymbol{m}}_{u_i^Z} + \sum_{v_j \in \mathcal{N}_{u_i^Z}} \boldsymbol{m}_{u_i^Z \leftarrow v_j^Z}),$$
 (4)

$$ilde{m{m}}_{u_i^Z} = m{u}_i^Z m{W}_{hge}^Z$$

$$u_i^Z = \begin{cases} head \ user \ , & |\mathcal{N}_{u_i^Z}| \le \mathcal{K}_{head} \\ tail \ user \ , & |\mathcal{N}_{u_i^Z}| > \mathcal{K}_{head} \end{cases}$$
 (5)

$$\boldsymbol{m}_{u_i^Z \leftarrow u_k^Z}^{head} = f_{head}(\boldsymbol{u}_{g1_i}^Z, \boldsymbol{u}_{g1_k}^Z) \tag{6}$$

$$\boldsymbol{m}_{u_i^Z \leftarrow u_l^Z}^{tail} = f_{tail}(\boldsymbol{u}_{g1_i}^Z, \boldsymbol{u}_{g1_l}^Z)$$
 (7)


$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{k}^{Z}}^{head} = \frac{1}{|\mathcal{N}_{u_{i}^{Z}}^{head}|} (\boldsymbol{u}_{g1_{k}}^{Z} \boldsymbol{W}_{head}^{Z} + \boldsymbol{b}_{head}^{Z}),$$

$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{l}^{Z}}^{tail} = \frac{1}{|\mathcal{N}_{u_{i}^{Z}}^{tail}|} (\boldsymbol{u}_{g1_{l}}^{Z} \boldsymbol{W}_{tail}^{Z} + \boldsymbol{b}_{tail}^{Z}).$$
(8)

$$\mathbf{u}_{head_{i}}^{Z} = \text{ReLU}(\sum_{u_{k} \in \mathcal{N}_{u_{i}^{Z}}^{head}} \mathbf{m}_{u_{i}^{Z} \leftarrow u_{k}^{Z}}^{head}),
\mathbf{u}_{tail_{i}}^{Z} = \text{ReLU}(\sum_{u_{l} \in \mathcal{N}_{u_{i}^{Z}}^{tail}} \mathbf{m}_{u_{i}^{Z} \leftarrow u_{l}^{Z}}^{tail}).$$
(9)

$$\mathbf{H}_{igm}^{Z} = \sigma(\mathbf{u}_{head_i}^{Z} \mathbf{W}_{h}^{Z} + \mathbf{b}_{h}^{Z} + \mathbf{u}_{tail_i}^{Z} \mathbf{W}_{t}^{Z} + \mathbf{b}_{t}^{Z}),
\mathbf{u}_{g2'_{i}}^{Z} = \tanh\left(\left(1 - \mathbf{H}_{igm}^{Z}\right) \odot \mathbf{u}_{head_{i}}^{Z} + \mathbf{H}_{igm}^{Z} \odot \mathbf{u}_{tail_{i}}^{Z}\right).$$
(10)

$$u_{g2_i}^Z = u_{g2_i}^Z + u_{g1_i}^Z.$$
 (11)

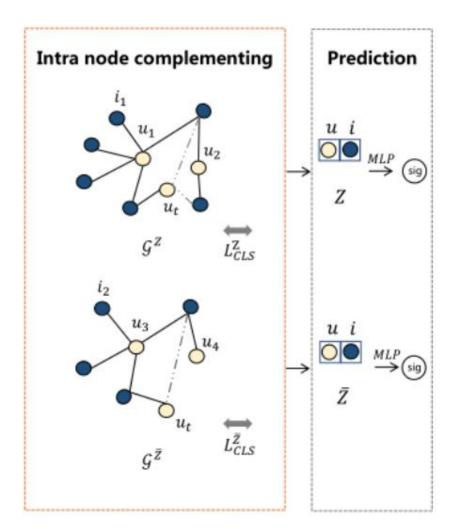
$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{\bar{i}}^{\bar{Z}}}^{self} = f_{self}(\boldsymbol{u}_{g2_{i}}^{Z}, \boldsymbol{u}_{g2_{i}}^{\bar{Z}}),$$

$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{r}^{\bar{Z}}}^{other} = f_{other}(\boldsymbol{u}_{g2_{i}}^{Z}, \boldsymbol{u}_{g2_{k}}^{\bar{Z}}),$$

$$(12)$$

$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{i}^{\bar{Z}}}^{self} = \boldsymbol{u}_{g2_{i}}^{\bar{Z}} \boldsymbol{W}_{self}^{Z} + \boldsymbol{b}_{self}^{Z},$$

$$\boldsymbol{m}_{u_{i}^{Z} \leftarrow u_{r}^{\bar{Z}}}^{other} = \frac{1}{|\mathcal{N}_{u_{i}^{Z}}^{cdr}|} (\boldsymbol{u}_{g2_{k}}^{\bar{Z}} \boldsymbol{W}_{other}^{Z} + \boldsymbol{b}_{other}^{Z}),$$
(13)


$$\mathbf{u}_{self_{i}}^{Z} = \text{ReLU}(\mathbf{m}_{u_{i}^{Z} \leftarrow u_{i}^{\bar{Z}}}^{self}),$$

$$\mathbf{u}_{other_{i}}^{Z} = \text{ReLU}(\sum_{u_{i}^{Z} \leftarrow u_{i}^{\bar{Z}}}^{other}). \tag{14}$$

$$\mathbf{u}_{g3_{i}^{*}}^{Z} = \mathbf{u}_{g2_{i}}^{Z} \mathbf{W}_{cross}^{Z} + \mathbf{u}_{self_{i}}^{Z} (1 - \mathbf{W}_{cross}^{\bar{Z}}),
\mathbf{u}_{g3_{i}^{*}}^{\bar{Z}} = \mathbf{u}_{g2_{i}}^{\bar{Z}} \mathbf{W}_{cross}^{\bar{Z}} + \mathbf{u}_{self_{i}}^{\bar{Z}} (1 - \mathbf{W}_{cross}^{Z}),$$
(15)

$$\mathbf{H}_{cdr}^{Z} = \sigma(\mathbf{u}_{g3_{i}^{*}}^{Z} \mathbf{W}_{s}^{Z} + \mathbf{b}_{s}^{Z} + \mathbf{u}_{other_{i}}^{Z} \mathbf{W}_{o}^{Z} + \mathbf{b}_{o}^{Z}),
\mathbf{u}_{g3_{i}^{'}}^{Z} = \tanh\left(\left(1 - \mathbf{H}_{cdr}^{Z}\right) \odot \mathbf{u}_{g3_{i}^{*}}^{Z} + \mathbf{H}_{cdr}^{Z} \odot \mathbf{u}_{other_{i}}^{Z}\right),$$
(16)

$$u_{g3_i}^Z = u_{g3_i'}^Z + u_{g2_i}^Z.$$
 (17)

$$\mathcal{L}_{total} = w_5 \mathcal{L}_{CO}^Z + w_6 \mathcal{L}_{CO}^{\bar{Z}} + w_7 \mathcal{L}_{cls}^Z + w_8 \mathcal{L}_{cls}^{\bar{Z}}.$$
 (24)

$$\alpha_{u_i^Z v_j^Z} = \frac{\exp(\boldsymbol{u}_{g3_i}^Z \boldsymbol{v}_j^{Z^T})}{\sum\limits_{v_j \in \mathcal{N}_{u_i^Z}} \exp(\boldsymbol{u}_{g3_i}^Z \boldsymbol{v}_j^{Z^T})}.$$
 (18)

$$\boldsymbol{u}_{g4_i}^Z = \boldsymbol{u}_{g3_i}^Z + \sum_{v_j \in \mathcal{N}_{u_i^Z}} \alpha_{u_i^Z v_j^Z} \boldsymbol{v}_j^Z \boldsymbol{W}_{ref}^Z + \boldsymbol{b}_{ref}^Z,$$
(19)

$$\hat{y}_{u_i,v_j}^Z = \sigma(\text{MLPs}(\boldsymbol{u}_{g4_i}^Z||\boldsymbol{v}_j^Z))$$
 (20)

$$\ell(\hat{y}, y) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]. \tag{21}$$

$$\mathcal{L}_{CO}^{Z} = \sum_{u_{i} \in \mathcal{U}^{Z}, v_{j} \in \mathcal{V}^{Z}} \left[w_{1} \ell(\hat{y}_{g0u_{i}v_{j}}^{Z}, y_{u_{i}v_{j}}^{Z}) + w_{2} \ell(\hat{y}_{g1u_{i}v_{j}}^{Z}, y_{u_{i}v_{j}}^{Z}) + w_{3} \ell(\hat{y}_{g2u_{i}v_{j}}^{Z}, y_{u_{i}v_{j}}^{Z}) + w_{4} \ell(\hat{y}_{g3u_{i}v_{j}}^{Z}, y_{u_{i}v_{j}}^{Z}) \right],$$
(22)

$$\mathcal{L}_{cls}^{Z} = \sum_{\substack{u_i \in \mathcal{U}^Z, \\ v_j \in \mathcal{V}^Z}} \ell(\hat{y}_{u_i v_j}^Z, y_{u_i v_j}^Z). \tag{23}$$

TABLE I: Statistics on the Amazon and MYbank datasets.

Data	set	Users	Items	Ratings	#Overlapping	Density
Amazon		50,841 87,875	43,858 38,643	713,740 1,184,889	15,081	0.03%
Amazon		27,519 107,984	9,481 40,460	161,010 851,553	16,337	0.06%
Amazon		41,829 27,328	17,943 12,655	194,121 170,426	7,857	0.03% 0.05%
MYbank		147,837 65,257	1,488 1,319	304,409 86,281	6,530	0.14% 0.10%

#Overlapping denotes the number of overlapping users across domains.

TABLE II: Experimental results (%) on the bi-directional Music-Movie CDR scenario with different user overlapped ratio.

				Music	-domain	recom	mendatio	on						Movie	e-domain	recom	mendatio	n		
Methods	\mathcal{K}_u =	0.1%	\mathcal{K}_u =	=1%	\mathcal{K}_u =	:10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	90%	K_u =	0.1%	\mathcal{K}_u :	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	:50%	\mathcal{K}_u =	=90%
	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR
LR [29] BPR [26]	5.25 2.97	9.31 6.63	5.78 2.92	10.03 6.77	5.92 2.67	11.40 5.76	7.36 2.79	14.41 6.15	9.74 2.92	18.58 6.26	31.36 21.63	47.08 35.59	21111	47.01 35.61	31.61 21.79	47.62 35.78	31.66 22.00	47.76 36.09	31.64 21.97	47.66 36.14
NeuMF 25	4.86	9.17	5.01	9.78	5.07	9.87	5.58	11.18	6.00	11.93	28.79	43.27	28.96	42.84	29.02	43.58	29.32	44.16	29.21	43.91
MMoE 30 PLE 31	6.60 6.66	12.83 13.12	6.85 6.89	14.25 14.26		14.69 14.60	9.02 9.00	18.30 17.64	10.44 10.08	20.70 19.78	30.20 31.72	48.54 47.47	31.15 31.83	47.12 47.46	31.31 31.96	47.77 47.89	31.32 32.04	47.84 47.89	31.80 32.02	48.07 48.03
CoNet 4 MiNet 6 GA-DTCDR 5	7.03 5.19 7.03	14.10 11.42 14.03	7.26 5.67 7.17	14.40 11.85 14.53	7.48 6.24 7.26	15.24 12.43 14.60	9.61 8.84 9.54	19.47 17.16 19.17	10.19 9.37 10.16	20.75 17.69 19.97	31.06 29.95 31.56	47.07 44.78 47.36	31.26 30.22 31.61	47.24 45.25 47.41	31.30 29.85 31.70	47.42 45.01 47.63	31.40 29.58 31.90	47.55 44.84 47.77	31.37 29.67 31.85	47.51 45.13 47.81
DML [10] HeroGraph [11] PTUPCDR [12]	6.81 6.59 <u>7.60</u>	13.08 13.40 14.95	7.32 7.44 <u>7.75</u>	13.54 13.89 15.23	7.02	15.58 14.49 <u>16.58</u>	9.58 9.15 9.89	18.66 18.55 20.08	10.55 10.34 10.97	20.33 20.33 21.31	26.36 32.05 31.80	40.84 48.14 47.31		41.47 48.38 47.65	27.44 32.16 31.92	41.63 48.40 47.84	27.36 32.23 31.90	41.76 48.52 47.94	27.42 32.18 31.93	41.86 48.43 47.96
NMCDR Improvement(%)	8.29 9.08	16.28 8.90	8.43 8.77	16.52 8.47	8.50 2.66	17.00 2.53	11.26 13.85	21.58 7.47	12.28 11.94	23.19 8.82	33.39 4.18	50.22 4.32	33.57 4.19	50.67 4.73	33.70 4.79	50.91 5.19	33.96 5.37	51.13 5.38	33.94 5.47	51.12 5.55

TABLE III: Experimental results (%) on the bi-directional Cloth-Sport CDR scenario with different user overlapped ratio.

	Cloth-domain recommendation												:	Sport-d	lomain r	ecomm	endation			
Methods	\mathcal{K}_u =	0.1%	\mathcal{K}_u	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	=50%	K_u =	=90%	K_u =	:0.1%	\mathcal{K}_u	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	=90%
	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR								
LR [29] BPR [26]	5.02 2.52	11.03 5.65	5.64 2.60	11.58 5.70	6.32 2.70	12.40 5.87	6.65 2.66	13.13 5.93	7.16 2.74	14.18 5.93	9.24 2.38	18.39 5.13	10.01 2.44	19.14 5.33	10.79 2.64	20.12 5.88	11.28 2.74	21.15 6.04	11.45 2.79	21.36 6.04
NeuMF [25]	2.88	7.02	3.48	7.65	4.26	8.75	4.35	8.82	4.35	9.16	6.19	11.45	6.43	12.43	6.71	12.96	7.09	13.62	7.52	14.41
MMoE 30 PLE 31	6.03 5.85	12.30 11.62	6.10 6.02	12.46 11.85	6.20 6.29	12.87 12.51	6.65 7.00	13.73 14.01	7.03 7.15	14.50 14.35	9.89 9.98	18.99 18.35	9.97 10.01	19.08 18.44	10.43 10.49	19.84 19.68	10.89 11.31	20.81 20.87	11.39 11.39	21.76 21.05
CoNet [4] MiNet [6] GA-DTCDR [5]	6.02 5.07 5.61	12.06 10.40 12.13	6.13 5.24 5.68	12.52 10.61 12.28	6.26 5.41 6.22	12.85 10.87 12.90	6.88 6.17 7.04	14.02 12.51 14.06	7.33 6.66 <u>7.59</u>	14.79 13.35 14.85	9.59 8.37 <u>10.71</u>	18.30 16.05 <u>20.28</u>	9.68 8.62 10.75	18.49 16.62 <u>20.34</u>	9.84 8.84 10.91	18.63 16.98 20.55	10.84 9.72 11.63	20.52 18.30 21.86	11.23 10.58 12.25	21.35 19.96 22.96
DML [10] HeroGraph [11] PTUPCDR [12]	5.37 6.21 <u>6.22</u>	10.63 12.30 <u>13.07</u>	5.44 6.34 <u>6.63</u>	10.90 12.53 <u>13.24</u>	5.59 6.37 <u>6.79</u>	11.10 12.75 <u>13.76</u>	6.31 7.06 <u>7.36</u>	12.57 13.90 <u>14.78</u>	6.55 7.51 7.58	12.96 14.75 <u>15.52</u>	6.51 10.45 10.66	12.42 19.53 19.88	6.53 10.52 10.91	12.49 19.91 20.33	6.62 11.06 <u>11.14</u>	12.73 20.74 <u>20.77</u>	7.05 11.77 <u>11.79</u>	13.47 21.73 <u>22.20</u>	7.75 12.24 12.18	14.99 22.75 22.95
NMCDR Improvement(%)	8.40 35.05	16.57 26.78	8.50 28.21	16.63 25.60	8.87 30.63	17.73 28.85	9.26 25.82	18.33 24.02	9.54 25.69	19.05 22.74	13.52 26.24	25.36 25.05	13.79 26.40	25.53 25.52	14.06 26.21	26.15 25.90	14.91 26.46	27.54 24.05	15.17 23.84	28.10 22.39

TABLE IV: Experimental results (%) on the bi-directional Phone-Elec CDR scenario with different user overlapped ratio.

				Phone	e-domain	recom	mendatio	n						Elec-	domain	recomm	endation	1		
Methods	\mathcal{K}_u =	0.1%	\mathcal{K}_u =	=1%	\mathcal{K}_u =	:10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	=90%	K_u =	0.1%	\mathcal{K}_u :	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	=90%
	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR
LR [29] BPR [26]	4.12 2.49	7.83 5.22	4.54 2.56	8.75 5.32	5.96 2.55	12.03 5.58	13.06 2.67	23.29 5.84	15.03 3.10	26.58 6.72	19.67 8.39	31.43 15.35	19.99 8.47	31.91 15.47	19.98 8.66	32.48 15.76	20.88 9.80	33.83 17.47	21.29 10.79	34.47 19.07
NeuMF [25]	3.45	6.73	3.54	7.07	4.01	8.34	7.79	14.36	10.40	18.65	15.82	25.25	16.04	26.12	16.27	26.17	17.12	27.43	17.77	28.60
MMoE [30] PLE [31]	3.95 4.24	8.71 9.13	4.18 4.82	9.05 9.92	7.54 7.27	15.56 14.55	13.66 13.84	24.85 24.94	16.08 16.22	28.67 28.27	20.16 19.95	32.07 32.61	20.27 20.32	32.83 32.73	20.85 20.75	33.24 33.08	21.05 21.60	34.05 34.44	21.64 22.21	34.88 35.60
CoNet [4] MiNet [6] GA-DTCDR [5]	3.93 3.56 3.70	8.16 7.58 7.70	4.02 3.66 4.41	8.46 7.70 9.18	6.88 7.22 7.54	14.23 14.20 15.14	13.21 13.23 14.13	24.26 23.51 25.42	15.67 15.83 16.36	28.23 27.63 28.80	19.65 18.22 20.39	31.57 28.61 32.85	19.77 18.99 20.55	32.13 28.64 32.90	20.20 19.30 20.75	32.89 31.24 33.77	21.00 19.89 21.08	34.10 31.90 34.08	21.56 20.64 22.20	35.02 33.14 35.75
DML 10 HeroGraph 11 PTUPCDR 12	4.56 4.21 4.29	9.39 9.03 8.88	4.62 4.32 <u>4.65</u>	9.88 9.76 9.18	7.08 7.77 <u>8.24</u>	13.79 15.71 <u>16.30</u>	12.76 14.22 <u>14.51</u>	23.21 25.82 25.82	14.64 16.33 <u>16.84</u>	26.24 29.20 29.39	15.70 19.09 20.51	25.59 31.27 32.73	15.72 19.99 20.60	25.66 31.91 <u>32.94</u>	16.09 21.11 20.93	25.98 34.31 33.89	16.93 21.19 21.80	27.38 34.31 <u>35.17</u>	17.54 21.58 <u>22.31</u>	28.48 34.84 <u>35.86</u>
NMCDR Improvement(%)	6.29 37.93	12.27 30.67	6.46 38.92	12.98 31.38		20.98 28.71	17.44 20.19	30.87 19.56	19.18 13.90	33.03 12.39	23.49 14.53	37.61 14.49	23.91 16.06	37.84 14.88	24.17 14.50	39.03 13.76	24.45 12.16	39.49 12.28	24.60 10.26	39.84 11.10

TABLE V: Experimental results (%) on the bi-directional Loan-Fund CDR scenario with different user overlapped ratio.

				Loan-d	omain re	ecomm	endation						I	und-d	omain re	comme	ndation			
Methods	\mathcal{K}_u =	0.1%	\mathcal{K}_u	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	=90%	\mathcal{K}_u =	0.1%	\mathcal{K}_u	=1%	\mathcal{K}_u =	=10%	\mathcal{K}_u =	=50%	\mathcal{K}_u =	=90%
	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR
LR [29]	47.34	67.59	47.42	67.73	47.65	67.88	47.75	67.82	47.87	68.08	21.97	34.57	22.08	35.65	25.24	36.83	29.70	46.14	31.48	50.98
BPR [26]	42.93	62.22	43.07	62.67	43.20	62.99	43.24	63.45	43.37	63.45	3.01	6.28	3.06	6.64	3.21	6.85	2.74	6.51	4.84	10.44
NeuMF [25]	46.20	66.66	47.27	67.21	47.74	67.92	48.01	68.19	47.95	68.27	21.53	33.86	21.87	34.07	25.34	37.66	30.78	48.81	30.14	48.73
MMoE 30	45.23	66.45	45.86	66.88	46.87	67.58	47.81	68.60	47.92	68.55	20.49	34.88	20.59	35.04	20.70	36.53	31.92	52.32	35.84	57.20
PLE 31	48.93	69.01	49.03	69.28	49.36	69.40	49.31	69.59	49.39	69.79	21.82	36.09	22.13	36.16	22.91	36.70	33.02	51.40	35.02	55.37
CoNet [4]	47.85	68.05	48.06	68.25	48.23	68.63	48.37	68.39	48.43	68.65	18.07	29.47	18.60	30.65	20.29	33.03	29.14	49.06	33.97	54.95
MiNet [6]	47.61	67.59	48.24	68.46	48.84	68.78	48.90	69.01	48.86	69.07	19.89	34.04	21.34	35.82	23.78	37.75	32.18	52.61	34.89	55.91
GA-DTCDR [5]	45.94	66.51	47.65	68.09	49.20	69.26	49.59	69.86	49.63	<u>69.94</u>	21.72	32.51	23.05	34.41	25.40	38.00	33.19	53.32	36.60	<u>57.29</u>
DML 10	47.12	67.84	47.95	68.56	49.01	69.77	48.87	69.50	48.84	69.56	21.01	35.75	22.80	37.35	25.84	39.04	32.81	51.44	34.61	54.74
HeroGraph 111	48.89	68.37	<u>49.16</u>	68.69	49.45	69.17	49.71	69.64	49.85	69.66	19.07	30.77	19.63	31.44	21.74	33.78	32.23	51.11	35.40	56.41
PTUPCDR 12	48.01	68.48	48.32	68.84	49.14	69.32	49.55	<u>69.91</u>	49.54	69.93	22.13	36.05	22.84	36.83	24.14	37.75	33.24	53.03	35.61	56.24
NMCDR Improvement(%)	49.47 1.10	69.54 0.77	49.69 1.07	69.84 0.80	49.84 0.79	69.97 0.29	49.89 0.36	69.98 0.10	49.91 0.12	70.06 0.17	25.32 14.41	39.47 9.37	25.69 11.45	39.75 6.43	26.38 2.09	40.46 3.64	35.24 6.02	55.03 3.21	37.29 1.89	58.54 2.18

TABLE VI: Experimental results (%) on the bi-directional Cloth-Sport and Loan-Fund CDR scenarios under different density settings D_s .

	Clo	th-do	main r	ecomi	mendat	ion	Spo	ort-do	main 1	ecom	mendat	ion	L	oan-do	main r	ecomn	endatio	n	Fu	ınd-do	main re	ecomm	endatio	n
Methods	D_s =	10%	D_s =	50%	D_s =	70%	D_s =	10%	D_s =	50%	D_s =	70%	D_s =	10%	D_s =	50%	D_s =	:70%	D_s =	:10%	D_s =	50%	D_s =	:70%
	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR
LR [29] BPR [26]	2.41 2.52	5.38 5.61	2.87 2.48	6.20 5.41	3.21 2.45	6.95 5.49	2.47 2.53	5.42 5.63	2.61 2.45	5.79 5.58	4.20 2.66	8.61 5.84	23.30 20.68	32.84 30.70	51.05	42.66 41.28	38.90 34.04	53.03 50.50	14.54 1.31	23.03	18.33 1.93	28.43 4.45	19.89 2.50	30.67 5.51
NeuMF [25]	2.61	5.78		5.96	2	5.96		5.39	2.68	5.90		7.02	23.62	33.13		45.04				23.43	17.47	25.79		27.84
MMoE 30 PLE 31	2.67 2.51	5.93 5.51	2.92 2.78	6.35 6.12		7.34 7.10		5.91 5.64	2.84 2.73	6.25 5.91	4.35 4.26	9.02 8.74	23.40 23.79	32.71 34.01	30.34 31.98	42.70 44.29		52.24 56.44		25.25 24.55		27.87 27.89		29.83 29.23
CoNet [4] MiNet [6] GA-DTCDR [5]	$\frac{2.83}{2.74}$ 2.81	6.11 5.74 6.03		6.11 6.19 <u>6.44</u>		7.09 6.81 7.50	2.51 2.49 2.47	5.60 5.61 5.48	2.76 2.69 <u>2.87</u>	6.18 5.96 6.17	3.95	8.68 8.31 <u>9.24</u>	23.11 24.55 24.15	33.62 35.45 34.53		45.51 47.14 44.01	37.13 41.51 40.11	54.62 57.54 57.49	14.63	23.99 24.24 25.90	17.27	28.47 28.59 31.75		29.42 30.38 32.96
DML [10] HeroGraph [11] PTUPCDR [12]	2.60 2.62 2.77	5.64 5.68 6.03	2.98	6.23 6.42 6.21		6.85 7.18 <u>7.72</u>	2.59	5.36 5.74 5.35	2.87 2.74 2.82	6.26 6.13 <u>6.34</u>	4.25	7.41 8.87 8.88	23.45 24.61 23.76	34.63 33.52 34.17	32.43	45.98 43.76 45.67	38.09	55.39 54.44 53.97	15.86	24.60 25.12 <u>26.06</u>	18.05	30.88 30.13 <u>32.26</u>	19.81	33.52 28.81 32.35
NMCDR Improvement(%	2.97) 4.95	6.29 2.95		6.96 8.07		8.60 11.40	2.80 5.26	6.05 2.37	3.39 18.12	6.97 9.94		10.46 13.20		36.71 3.55	34.18 5.01	49.75 5.54	44.19 6.45	61.38 6.67	17.82 9.46	26.98 3.53	21.40 7.00	33.96 5.27	24.68 9.11	34.90 4.12

TABLE VII: Average statistics of online traffic logs for 1 day.

Dataset	Users	Items	Ratings	#Overlapping	Density
Loan	45,263,394	48,282	778,136,734	488,836	0.04%
Fund	801,349	1,039	479,504		0.06%
Account	4,856,675	9,816	9,149,842		0.02%

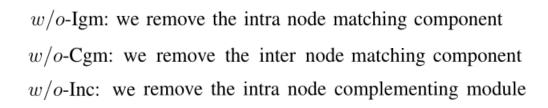

#Overlapping denotes the number of overlapped users across domains.

TABLE VIII: Experimental results of the online A/B testing from 12.1 to 12.15, 2022

	Loan Domain	Fund Domain	Account Domain
Control Group	10.50%	6.12%	1.89%
MMOE Group	12.14%	6.45%	2.11%
PLE Group	12.57%	6.69%	2.27%
DML Group	<u>12.93%</u>	<u>6.81%</u>	<u>2.43%</u>
NMCDR Group	13.81%	7.13%	2.59%
Improvement	6.81%	4.70%	6.58%

TABLE IX: Experimental results (%) with different model variants. w/o denotes the model without the corresponding component variant.

Scenarios	Metrics	w/o-Igm	Model v w/o -Cgm	rariants w/o -Inc	w/o-Sup	Ours
Music	NDCG@10	10.28	9.30	10.90	9.78	11.26
iviusic	HR@10	19.28	18.78	20.89	19.16	21.58
Movie	NDCG@10	32.84	31.96	33.60	32.60	33.96
Movie	HR@10	48.73	48.01	50.48	48.93	51.13
Cloth	NDCG@10	9.14	7.35	8.95	8.38	9.26
Cloui	HR@10	17.99	15.14	17.65	17.59	18.33
Sport	NDCG@10	14.75	13.02	14.60	13.98	14.91
Sport	HR@10	26.94	24.35	26.86	27.04	27.54
Phone	NDCG@10	16.50	14.42	17.05	17.09	17.44
Phone	HR@10	29.47	25.37	29.70	29.82	30.87
Elec	NDCG@10	23.75	20.82	24.10	24.13	24.45
Elec	HR@10	37.95	33.87	38.26	38.43	39.49
Lann	NDCG@10	49.69	49.40	49.76	49.67	49.89
Loan	HR@10	69.83	69.32	69.89	69.79	69.98
Fund	NDCG@10	34.84	34.77	35.10	34.90	35.24
Fund	HR@10	54.84	54.35	54.91	54.80	55.03

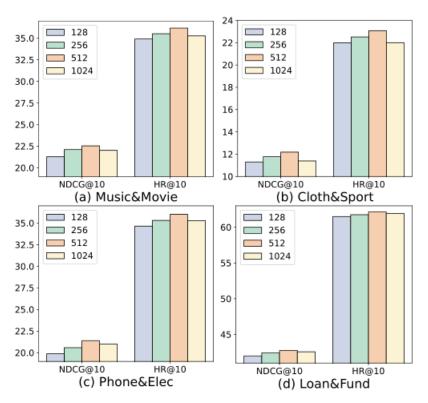


Fig. 3: Impact of number of matching neighbors.

w/o-Sup: we remove the multiple supervisory signals

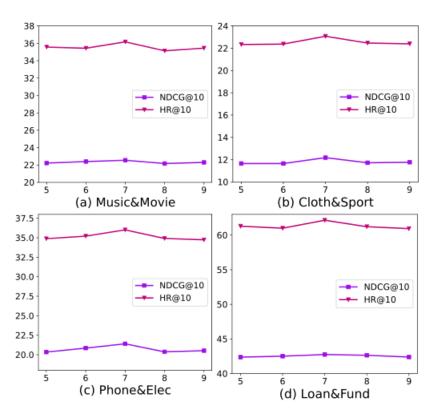


Fig. 4: Impact of threshold of head/tail user discrimination.

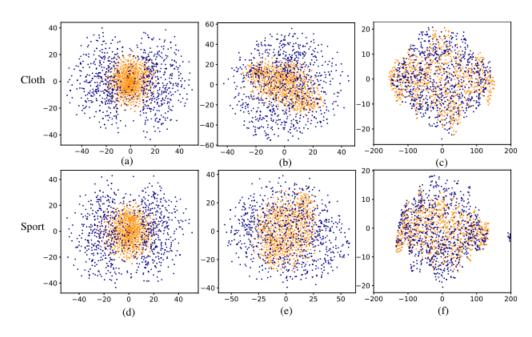


Fig. 5: The visualization of learned user representations for evaluating the effectiveness of NMCDR's each key component.

Thank you!